Python中Numpy模块的使用

目录

NumPy

ndarray对象

Numpy数据类型

Numpy数组属性


NumPy

NumPy(Numerical Python) 是 Python 的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Nupmy可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。据说NumPy将Python相当于变成一种免费的更强大的MatLab系统。

NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:

  • 一个强大的 N 维数组对象 ndarray
  • 广播功能函数
  • 整合 C/C++/Fortran 代码的工具
  • 线性代数、傅里叶变换、随机数生成等功能

ndarray对象

NumPy 最重要的一个对象是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,可以使用基于 0 的索引访问集合中的项目。

ndarray 对象是用于存放同类型元素的多维数组。ndarray中的每个元素在内存中使用相同大小的块。 ndarray中的每个元素是数据类型对象的对象(称为 dtype)

numpy.array( object ,  dtype = None , ndmin = 0 ,copy = True , order = None ,  subok = False )

 一般只有 object 、dtype和 ndmin 参数常用,其他参数不常用 

import numpy
a=numpy.array([1,2,3])                #一维
b=numpy.array([[1,2,3],[4,5,6]])      #二维
c=numpy.array([1,2,3],dtype=complex)  #元素类型为复数
d=numpy.array([1,2,3],ndmin=2)        #二维
print(a,type(a))
print(b,type(b))
print(c,type(c))
print(d,type(d))
####################################
[1 2 3] <class 'numpy.ndarray'>
[[1 2 3]
 [4 5 6]] <class 'numpy.ndarray'>
[1.+0.j 2.+0.j 3.+0.j] <class 'numpy.ndarray'
[[1 2 3]] <class 'numpy.ndarray'>

Numpy数据类型

Numpy数组属性

NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推。

在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。

很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。

 ndarray 对象属性有:

常见的属性有下面几种 :

ndarray.shape :  这一数组属性返回一个包含数组纬度的元组,它也可以用于调整数组大小 

import numpy as np
a=np.array([[1,2,3],[4,5,6]])
print(a.shape)           #打印shape属性
a.shape=(3,2)            #修改shape属性
print(a)
#######################################
(2, 3)
[[1 2]
 [3 4]
 [5 6]]

 ndarray.ndim: 这一数组属性返回数组的维数

import numpy as np
a=np.arange(24)     #np.arange返回0-23的列表类型的数据
print(a.ndim)
b=a.reshape(2,3,4)
print(b)
print(b.ndim)
############################
1
[[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]

 [[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]]
3

ndarray.itemsize : 这一数组属性返回数组中每个元素的字节单位长度

import numpy as np
a=np.array([1,2,3])  #默认是四个字节
print(a.itemsize)
#########################################
4

numpy.mat()函数的用法 

该函数用来创建矩阵

import numpy as np

#将列表转为矩阵
a=[7,8,9]
b=np.mat(a)
print(b)
print("#"*10)

#创建一行的矩阵
m=np.mat([1,2,3])   
print(m)
print("打印出第一行的第三个值:",m[0,2])  		#取第一行的第三个值
print("#"*10)


x=np.mat([[3,2,1],[6,5,4]])
print(x)
print("打印出矩阵的第二行:",x[1])
print("打印出矩阵的第二行:",x[1,:])
print("打印出矩阵的行列数:",x.shape)  	#获得矩阵的行列数
print("打印出矩阵的行数  :",x.shape[0])   #获得矩阵的行数
print("打印出矩阵的列数  :",x.shape[1])   #获得矩阵的列数
x.sort()               #对矩阵的每一行进行排序
print("对矩阵的每一行进行排序:")
print(x)
print("#"*10)

 

numpy.zeros()函数的用法 

该函数用于返回给定形状和类型的新数组。返回的数据类型为 numpy.ndarray,具有给定形状,类型和顺序的0的数组。

numpy.zeros(shape,dtype=float,order = 'C')

参数:

  • shape:int 或 int 的元组。新阵列的形状,例如:(2,3)或2。
  • dtype:数据类型,可选。、例如numpy.int8。默认是numpy.float64
  • order:{'C','F'},可选,默认:'C' 。是否在内容中以行(C)或列(F)顺序存储多维数据。
import numpy as np

a=np.zeros(5)
print(a,type(a))

b=np.zeros([1,2],dtype='int8')
print(b)

c=np.zeros([1,2,3],dtype='int8')
print(c)

 

相关文章:NumPy教程

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付 19.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值